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ABSTRACT

We use more than 4500 microflares from the RHESSI microflare data set to estimate electron densities and volumetric
filling factors of microflare loops using a cooling time analysis. We show that if the filling factor is assumed to be
unity, the calculated conductive cooling times are much shorter than the observed flare decay times, which in turn
are much shorter than the calculated radiative cooling times. This is likely unphysical, but the contradiction can
be resolved by assuming that the radiative and conductive cooling times are comparable, which is valid when the
flare loop temperature is a maximum and when external heating can be ignored. We find that resultant radiative
and conductive cooling times are comparable to observed decay times, which has been used as an assumption in
some previous studies. The inferred electron densities have a mean value of 1011.6 cm−3 and filling factors have a
mean of 10−3.7. The filling factors are lower and densities are higher than previous estimates for large flares, but
are similar to those found for two microflares by Moore et al.
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1. INTRODUCTION

Energy release in flares in solar active regions occurs over
many orders of magnitude, from large flares to microflares
with as low as a millionth of the energy content of large
flares. The latter are A and B GOES class events, which occur
more frequently than large flares with a negative power-law
distribution in a number of flares as a function of energy release
extending over many decades in energy (Lin et al. 1984; Dennis
1985; Crosby et al. 1993; Feldman et al. 1997; Wheatland
2000; Nita et al. 2002; Paczuski et al. 2005), which suggests
a common energy release mechanism. There are some features
in common among flares of all sizes, such as radiation in
multiple wavelength bands and similar X-ray light curves (see,
e.g., Fletcher et al. 2011 for a review). However, observational
differences also exist between small and large flares. Large
flares are associated with higher temperatures than small flares
(Feldman et al. 1995; Caspi & Lin 2010). Also, weaker hard
X-ray flares may have steeper spectra than more energetic ones
(Christe et al. 2008; Hannah et al. 2008).

Statistical studies of hard X-ray microflares have become
more comprehensive since the launch of the RHESSI satellite
(Lin et al. 2002). RHESSI achieves a lower energy cutoff in the
X-ray spectrum than previous detectors. By using removable
shutters, RHESSI allows observation of both large and small
flares (see, e.g., Hannah et al. 2010 for a description). A recent
study (Christe et al. 2008) used a new flare-finding technique
to identify over 24,000 microflares from 2002 March–2007
March. Statistical analyses of the microflare properties were
carried out by Christe et al. (2008) and Hannah et al. (2008).
This large data set allows for unprecedented studies of flare
properties.

Here, we use this large data set to infer the electron density
and the volumetric filling factor of the microflare loops in the
RHESSI data set. The volumetric filling factor is the fraction of
the flare loop volume from which radiation is detected. While
the filling factor is often thought of as a robust parameter
for flare loops, it should be noted that its determination is
potentially instrument- and resolution-dependent. A previous
estimate of the density assumed the filling factor was unity
(Hannah et al. 2008). We use a cooling-time analysis (see, e.g.,
Moore et al. 1980) to argue that the volumetric filling factors
of microflare loops may be considerably smaller than unity,
implying densities considerably higher than the estimates from
Hannah et al. (2008). The filling factors and densities we find
are consistent with a previous study of two microflares observed
with Yohkoh (Moore et al. 1999).

The RHESSI microflare data set is described in Section 2.
The analytical technique is reviewed and critiqued in Section 3.
Results and uncertainty estimates are presented in Section 4.
Finally, conclusions are discussed in Section 5.

2. OBSERVATIONAL DATA

A thorough description of the observational data is given by
Christe et al. (2008) and Hannah et al. (2008); the details most
salient for the present study are summarized here. The data
set consists of all microflares observed with RHESSI between
2002 March and 2007 March. The microflares were found to
exclusively occur in active regions. The events were identified
as local maxima in the count rate of 6–12 keV photons having the
appropriate sign of the time rate of change of the count rate on
either side of the maxima with signal-to-noise ratio sufficiently
large. A total of 24,097 events were identified. Of these, spectral
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Figure 1. Distributions of raw data used in the present study using the methods described by Christe et al. (2008) and Hannah et al. (2008). Plotted are (a) flare decay
time τD , (b) the logarithm of the emission measure EM, (c) the logarithm of the temperature T, (d) flare loop full-length L, (e) flare loop full-width w, and (f) the
logarithm of the flare loop volume V.

fitting and imaging analysis was possible for 4567 events, which
allowed for a determination of the plasma parameters required
for the present analysis, namely, the microflare decay time τD ,
the emission measure EM, the temperature T, and the loop length
L and width w.

Histograms showing distributions of the parameters used
in the present study are given in Figure 1. These and all
distributions use 45 equally sized bins. The decay time τD of the
flare is determined from the flare finding algorithm (Christe et al.
2008), which employs a condition on the time derivative of the
count rate to determine the end of the event. Their distribution
is shown in panel (a); the median value is 192 s. The minimum
decay time of any microflare in the present study is 4 s.

The emmission measure EM (assumed isothermal) and tem-
perature T are determined from spectral fitting of RHESSI hard
X-ray data to a model assuming an isothermal plasma with a
power-law tail above 10 keV (Hannah et al. 2008). The log-
arithm of EM is plotted in panel (b), with the temperature in
panel (c). Median values are 13.0 MK and 2.38 × 1046 cm−3.
The uncertainty in EM was estimated as 1%–10% and the esti-
mated (statistical) uncertainty in T is less than 1% (Hannah et al.
2008).

Finally, the physical size of the flare loops was estimated
using the visibility forward fitting described by Hannah et al.
(2008), which fits several Gaussian sources along the curved
loop to estimate the full-length L and a central Gaussian FWHM
to provide a measure of the full-width w of the flare loops.
The volume is estimated as V = π (w/2)2L. Distributions of
L,w, and the logarithm of V are plotted in panels (d), (e),
and (f), respectively, with median values of 2.09 × 109 cm,
0.665×109 cm, and 7.38×1026 cm3. The estimated (statistical)
uncertainty in L and w is �20%, which is the standard deviation
of repeated (100) fit attempts with the visibility amplitudes
randomized within their statistical error each time (Hannah et al.
2008). There are also systematic errors such as projection effects
and the assumption of a circular cross section of the loops, which
are not included in the estimate. Another possible source of
systematic error is that the observations are from particles that
have considerably higher energy than the thermal background,
so the determination of L may be an underestimate of the overall

size of the loop because of the absence of thermal particles in
the data.

3. DATA ANALYSIS

The loop electron density ne was not measured, but can be
estimated using the definition of the isothermal EM,

EM =
∫

V

n2
e dV, (1)

where dV is a differential volume element and V is the total
volume of a flare loop. The simplest and most common way
to estimate ne is to assume that it is uniform over the volume,
which implies

ne =
√

EM

V
. (2)

This expression is correct if radiation can be detected from all
electrons that are present in the loop, i.e., the loop is assumed
to be optically thin. If finite optical depth effects are present in
a particular loop, then the observed X-ray flux from that loop
does not include direct contributions from all electrons, so the
actual density would be higher than the estimate in Equation (2).
Therefore, Equation (2) provides a lower bound on ne.

An improvement on this technique comes from defining the
so-called filling factor φ. In terms of the filling factor, the
characteristic loop electron density ne is

ne =
√

EM

φV
. (3)

Since Equation (2) gives a lower bound on ne, φ is a positive
number between 0 and 1.

Here, estimates of the density will be tested using a cooling
time analysis. Similar analyses have been performed previously
in many contexts (Moore et al. 1980, 1999; Haisch 1983; Stern
et al. 1983; Lin et al. 1992; Cargill 1993; Shibata & Yokoyama
1999; Aschwanden et al. 2000, 2008; Cargill & Klimchuk 2004;
Mullan et al. 2006; Jiang et al. 2006; Vrsnak et al. 2006;
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Tsiropoula et al. 2007; Cassak et al. 2008). Cooling timescales
are estimated using a scaling analysis (replacing derivatives by
finite differences of characteristic scales) of the hydrodynamic
temperature equation for a compressible optically thin plasma,

nkB

γ − 1

dT

dt
= −nkBT ∇ × v + κ∇2T − n2

eΛ(T ) + Q̇ext, (4)

where T is the temperature, n is the total plasma density, γ
is the ratio of specific heats, v is the bulk flow velocity, kB
is Boltzmann’s constant, κ(T ) is the coefficient of thermal
conductivity, Λ(T ) is the radiative loss function for an optically
thin plasma, and Q̇ext is the volumetric heating rate from external
sources. Here, we assume quasi-neutrality so that n � 2ne and
that the plasma is an ideal gas with γ = 5/3. Comparing the
left-hand side to the radiative loss term gives a radiative decay
timescale τR of

τR ∼ 3kBT

neΛ(T )
. (5)

Comparing the left-hand side to the conduction term gives a
conductive decay time τC of

τC ∼ 3nekB(L/2)2

κ(T )
, (6)

where L/2 is half the length of the flare loop, which is the
distance from loop top to the solar surface.

The radiative loss function is usually taken as a piecewise
continuous function controlled by different physics at different
temperatures. For the temperatures of the flare plasmas in the
present study (T ∼ 8–20 MK from Figure 1(c)), the functional
form of the radiative loss function is Λ(T ) � 5.49 × 10−16/T
(Klimchuk et al. 2008). For the thermal conductivity κ(T ),
we employ the temperature-dependent parallel Spitzer thermal
conductivity of κ(T ) = κ0T

5/2/ ln λ (Spitzer & Härm 1953),
where the coefficient κ0 = 1.84×10−5 erg cm−1 s−1 K−7/2, the
temperature is in Kelvin, and ln λ is the Coulomb logarithm with
λ = (3/2e3)(k3

BT 3/πne)1/2 for a pure hydrogen plasma.
This type of scaling analysis has been used previously to es-

timate cooling times of flare loops and determine which mecha-
nism dominates the cooling, typically for large flares. Early stud-
ies (Antiochos & Sturrock 1976) suggested conductive cooling
is more efficient, but the effects of chromospheric evaporation
slow it down (Antiochos & Sturrock 1978). The role of radiation
was studied (Antiochos 1980), and for a while it was believed
that radiation and conduction act comparably to cool flare loops
(Moore et al. 1980) because the predicted times from the scal-
ing analysis were comparable to observed flare loop decay times
τD . From the theoretical perspective, it is reasonable that these
timescales are comparable due to the function of the chromo-
sphere as a reservoir for the corona (Sturrock 1980; Moore et al.
1980).

The observational and theoretical result that τC ∼ τR ∼ τD

prompted authors to assume this relation to estimate parame-
ters for stellar flares for which well-resolved optical data were
not available (Haisch 1983; Stern et al. 1983). A recent study
comparing predictions using this model to independently de-
rived parameters (n,L, T ) of stellar loops found good agree-
ment (Mullan et al. 2006), lending credence to the validity of
this assumption.

However, caution must be used in interpreting the scaling
analysis timescales as genuinely representative of the decay of
flare loops. Doschek et al. (1982) used simulations to suggest

that conduction dominates early in time when the temperature
is highest, followed by comparable contributions from radiation
and conduction. Cargill (1993) used a model in which strictly
conductive cooling occurred at early times before transitioning
to radiative cooling at flare maximum because of chromospheric
evaporation enhancing radiative cooling at late times. Therefore,
there need not be a single dominant mechanism throughout the
duration of the event.

Another important issue is that the parameters that go into
Equations (5) and (6) are tacitly assumed to be constant and
uniform, but the temperature changes as the loop cools and
thus the scaling results are not applicable to finding the time
it takes to cool from one temperature to another (Cargill et al.
1995). Taking into account the change in temperature would
require time integration (Culhane et al. 1970; Svestka 1987;
Aschwanden & Tsiklauri 2009). Since the difference between
actual cooling times and the scaling result can be significant,
the scaling analysis timescales only indicate instantaneous
timescales of cooling (Cargill et al. 1995).

The scaling analysis is on firmer theoretical footing at peak
flare temperature. At peak temperature, the loop goes from being
heated to cooling, so the left-hand side of Equation (4) is zero
instantaneously (Aschwanden 2007). Ignoring the expansion
term (which is safe when flow speeds are subsonic) and
assuming that there is no external heating, the right-hand side
implies that conduction balances radiation instantaneously at
the temperature peak, i.e.,

τC ∼ τR. (7)

This is the same relation as before, but with a very different in-
terpretation. For the purposes of the present study, we subscribe
to the latter interpretation of expecting equality only at peak
flare temperature rather than interpreting the scaling results as
predictions for the actual decay time. (However, a relation to
the decay time will be discussed in the following section.) Thus,
the cooling times are evaluated at the beginning of the cooling
process.

It is important to point out aspects left out of the present
model that have been discussed in previous studies. The scal-
ing analysis ignores pressure variation along the tube (Serio
et al. 1981), radiative cooling at loop footpoints (Antiochos &
Sturrock 1982), chromospheric evaporation (Cargill et al. 1995),
shrinkage of loops (Svestka et al. 1987; Forbes & Acton 1996),
spatial nonuniformity (Antiochos et al. 2000), and the effect of
multiple loops (Reeves & Warren 2002). See Aschwanden &
Aschwanden (2008) for an approach incorporating fractal di-
mensional filling of flare loops. A recent study emphasizes the
role of enthalpy flux in flare loops (Bradshaw & Cargill 2010).
If any of these aspects of solar flare evolution play a significant
role in determining the timescales of flare decay, the results of
the present paper could change in detail.

4. RESULTS

The density estimates presented in Hannah et al. (2008)
employed Equation (2), which assumes a filling factor of unity.
The distribution of the logarithm of ne under this assumption
for the data in the present study is plotted in Figure 2(a).
The mean electron density of the distribution in Figure 2(a)
is ne � 109.8 cm−3. As noted earlier, this mean density is a
lower bound on the true mean density of the flares in the present
study.

Using the density derived for each individual event, we
estimate the radiative and conductive cooling times using

3



The Astrophysical Journal, 736:75 (7pp), 2011 July 20 Baylor et al.

8.0 9.0 10.0 11.0 11.5
log10 (Density [cm-3])

0.00

0.02

0.04

0.06

F
re

q
u
e
n
c
y

8.0 9.0 10.0 11.0 11.5
log10 (Density [cm-3])

0.00

0.02

0.04

0.06

F
re

q
u
e
n
c
y

2 3 4 5 6
log10(τR [sec])

0.0000

0.0217

0.0433

0.0650

F
re

q
u

e
n

c
y

2 3 4 5 6

0.0000

0.0217

0.0433

0.0650

0.0 0.5 1.0 1.5 2.0
log10(τC [sec])

0.0000

0.0255

0.0509

0.0764

F
re

q
u

e
n

c
y

0.0 0.5 1.0 1.5 2.0

0.0000

0.0255

0.0509

0.0764

0 1 2 3 4 5
log10(τR / τD)

0.00

0.02

0.04

0.06

F
re

q
u

e
n

c
y

0 1 2 3 4 5
log10(τR / τD)

0.00

0.02

0.04

0.06

F
re

q
u

e
n

c
y

-3.5 -3.0 -2.0 -1.0 0.0 0.5
log10(τC / τD)

0.00
0.02

0.04

0.06
0.08

F
re

q
u

e
n

c
y

-3.5 -3.0 -2.0 -1.0 0.0 0.5
log10(τC / τD)

0.00
0.02

0.04

0.06
0.08

F
re

q
u

e
n

c
y

1.0 1.5 2.0 2.5 3.0
log10(τD [sec])

2.7

3.9

5.1

6.3

lo
g

1
0
(τ

R
 [
s
e
c
])

1.0 1.5 2.0 2.5 3.0
log10(τD [sec])

-1.019

0.079

1.177

2.274

lo
g

1
0
(τ

C
 [

s
e

c
])

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 2. Flare parameters assuming a filling factor φ of unity. Plotted are
distributions of the logarithms of (a) electron density ne, (b) calculated values
of the resistive cooling time τR and (c) the conductive cooling time τC , (d) the
ratio of radiative-to-flare decay times τR/τD , and (e) the ratio of conductive
cooling times to flare decay times τC/τD . Panels (f) and (g) are scatter plots of
the logarithms of τR vs. τD and τC vs. τD , respectively.

Equations (5) and (6) for each microflare. The raw values for
the distributions of the logarithms of the resultant radiative and
conductive cooling times are plotted in Figures 2(b) and (c),
respectively. The median values of the calculated τR and τC

are 2.06 × 104 s and 5.43 s, respectively. Figures 2(d) and
(e) show the same values normalized to the flare’s observed
decay times τD . Panels (f) and (g) show a scatter plot of the
logarithm of the calculated cooling times compared to the
logarithm of their decay times, showing that the timescales
are essentially uncorrelated. Panel (d) shows that the radiative
cooling times are distributed around a peak about 100 times
longer than τD , while panel (e) shows that the conductive
cooling times are distributed around a peak almost 100 times
smaller than τD , i.e., τC � τD � τR . This strongly contradicts

the hypothesis in Equation (7). Note, this assessment assumes
that it is reasonable to compare the measured decay time to
instantaneous e-folding times from the scaling. Since they may
differ, this could introduce systematic errors in the comparison.
However, we suspect that it is not enough to account for the
large separation in scales inferred here.

Assuming that the plasma parameters we use (including
the density) are correct, it is difficult to envision a physical
explanation that could justify the disparity in timescales because
one expects a flare to decay on a timescale determined by the
shortest available dissipation time. From this perspective, it is
difficult to understand how, in the presence of strong conductive
cooling, the actual decay time can be much longer than the
conductive timescale. A likely cause is the assumption that
φ = 1, which we now relax.

In order to address the four orders of magnitude disparity
that appears to exist between the conductive and radiative decay
times, we assume Equation (7) holds and use it to solve for the
density and filling factor. We then check to see if this assumption
helps us arrive at an internally consistent set of flare decay
timescales. Equating Equations (5) and (6) and solving for ne
gives

ne =
√

4κ(T )T

L2Λ(T )
. (8)

This is equivalent to the classical analysis of Rosner et al. (1978).
Since κ is a (weak) function of density due to the Coulomb
logarithm, we employ an iterative technique to self-consistently
solve for the density. The procedure is to assume φ = 1 to obtain
a zeroth order estimate n0, which is used to calculate the zeroth
order κ0. The next order of density n1 is then determined from
the previous κ0. This is continued until convergence. We find ne
is determined to eight significant figures after ten iterations and
that the iterative procedure changes Λ(T ) by only 10%. Using
this value of the density, the filling factor is obtained from
Equation (3) and cooling times are obtained from Equations (5)
and (6).

The results of this analysis are displayed in Figure 3. Panel (a)
shows the distribution of the logarithm of the radiative cooling
time τR , while (b) shows the distribution for the logarithm of τR

normalized to the flare decay time τD . The conductive cooling
times τC are equal to τR by construction. The median value of τR

is 325 s, which is within a factor of 1.7 of the median value of τD .
This is reiterated in panel (c), which is a scatter plot of τR and τD .
The values do not appear to be correlated, but they are clearly of
the same order. It is surprising that the scales of the cooling times
are essentially equal to a key empirical timescale, τD; nothing
in the model requires that such a similarity should emerge from
the analysis. Of course, there are uncertainties associated with
the comparison of observed decay times and predicted e-folding
scaling times, but the present results lend observational support
to the assumption that a model with τC ∼ τR ∼ τD (as has often
been assumed before) is consistent, at least for the present data
set.

Panel (d) shows the logarithm of the resultant values for the
calculated densities from Equation (8). The distribution has
a mean of ne ∼ 1011.6 cm−3, which is nearly two orders of
magnitude higher than the reported values in Hannah et al.
(2008) and is plotted in Figure 2(a). The inferred filling factors,
the logarithm of which is shown in panel (e), have a mean of
φ ∼ 10−3.7. We discuss these results further in the following
section.
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Figure 3. Flare parameters assuming radiative and conductive cooling times
are equal. Plotted are distributions of the logarithms of (a) the radiative cooling
time τR and (b) the ratio of radiative-to-flare decay times τR/τD . The conductive
cooling time is equivalent to the radiative cooling time by construction. Panel
(c) shows a scatter plot of the logarithms of τR vs. τD . Also plotted are the
logarithms of (d) the electron density ne and (e) the filling factor φ.

Using the calculated densities, one can calculate other proper-
ties of the flare loops. The logarithm of the total thermal energy
WT = 3nekBTeV in the flare loops is shown in Figure 4(a), with
a median value of 1.57 × 1030 erg. The distribution of the log-
arithm of the calculated gas pressures P = 2nekBTe is shown
in Figure 4(b), with a median value of 1.43 × 103 erg cm−1.
Figure 4(c) is a scatter plot of the logarithm of the calculated
filling factor φ against the electron temperature Te. The fill-
ing factor is smaller for higher temperature loops, which is a
consequence of Equations (3) and (8).

We now discuss the effect of uncertainties in the present
analysis. As discussed in Section 2, the statistical errors in
the length L, emmission measure EM, and temperature T
are approximately 20%, 10%, and 1% (Christe et al. 2008;
Hannah et al. 2008). Standard error propagation techniques
imply uncertainties for calculated cooling times (40%), densities
(20%), and filling factors (40%), which are sizable but not
unreasonably large.

A few potential sources of systematic errors have been
noted. They include assuming that the measured decay time τD

corresponds to an e-folding decay time from a scaling analysis,
that the representative loop length is assumed to be equal to
the values obtained by Hannah et al. (2008) determined from
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Figure 4. Distributions of the logarithms of (a) the calculated thermal energy
WT = 3nekBTeV and (b) gas pressure P = 2nekBTe using the values of density
from Figure 3(a). Panel (c) is a scatter plot of the logarithm of the filling factor
φ against electron temperature Te.

particles at energies far above thermal energies, and that there
is no external heating at the time of peak flare temperature.

5. DISCUSSION

In this paper, RHESSI microflare data are used to estimate the
volumetric filling factor and the electron density of microflare
loops using an analysis of cooling times. If the filling factor is
assumed to be unity, then the conductive cooling time of the
loop is much smaller than the observed decay time, which itself
is much smaller than the radiative decay time. This is difficult
to justify physically. Alternately, if one invokes the hypothesis
that the radiative and conductive cooling times are comparable
at the moment when the flare temperature passes through its
maximum value (and that cooling due to expansion and flare
heating are negligible at that time), one can solve for the filling
factor and density. Mean values for the whole distribution are
φ ∼ 10−3.7 and ne ∼ 1011.6 cm−3. Our weakest assumption is
that flare heating stops at the peak time of hard X-rays. Since the
hard X-ray time profile is a convolution of heating and cooling,
heating does not necessarily stop at the hard X-ray peak time.
If heating is present during the decay, even at a low level, the
cooling times could be longer than derived for the case without
heating, and the filling factor could be larger than derived here.

Our estimates of mean densities are higher than those reported
by Hannah et al. (2008). We are aware of only one other
systematic study of microflare loop densities or filling factors,
by Moore et al. (1999), who used Yohkoh to study two microflare
strands. Using an identical analytical technique as the present
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study, they found densities between ne ∼ 1010 cm−3 and
1011.6 cm−3, with filling factors between 10−3.2 and 10−2.8.
Thus, the values in the two microflares studied by Moore et al.
(1999) from Yohkoh are in good agreement with results from the
large RHESSI data set studied here.

We now compare the present results with observations
of large flares. Culhane et al. (1994) found φ ∼ 1 and
ne ∼ 3 × 1011 cm−3 for an M-class flare, Varady et al. (2000)
found φ ∼ 0.01–0.2 and ne ∼ 7 × 109–1.5 × 1010 cm−3 for a
C-class flare, Aschwanden & Alexander (2001) found φ ∼ 1
and ne ∼ 1.5 × 1010 cm−3 for the Bastille Day flare, Teriaca
et al. (2006) found φ ∼ 0.2–0.5 and ne ∼ 1010 cm−3 for a
C-class flare, and Raymond et al. (2007) found φ � 0.01 and
ne ∼ 1011 cm−3 for X-class flares. Other examples of filling
factors include 0.3 in active region loops (Landi et al. 2009),
0.04–0.07 in coronal holes (Abramenko et al. 2009), and near
unity in many coronal hole jets (Doschek et al. 2010), although
another study found them to have filling factors of 0.03 (Chifor
et al. 2008). As noted earlier, the determination of filling factors
can depend on detector resolution and wavelength. Nonethe-
less, the filling factors obtained here for microflares are at least
10 times smaller than those reported for large flares, which is
likely statistically significant. Densities are slightly higher for
microflares in the present study than for larger flares in previous
studies.

Given the characteristics of the microflare data set considered
here compared to large flares, it is perhaps not surprising that
the filling factors are small. The microflare loops in the present
study occur in active regions, just as large flares do. The mean
sizes of the loops in the present study are comparable to those of
larger flares. The loops have energies of nekBT V ∼ 1028 ergs
deposited into them by the flare (using characteristic values
from Figure 1), which is about 104 times smaller than large
flares. Thus, the loops are of similar size but acquire less
energy, which could lead to a smaller filling factor. To estimate
the size of the region for which radiation is detected, we
note the radiating volume is V∗ = φV . Assuming that the
length of the radiating plasma is L, the effective width w∗ of
the radiating plasma is given by V∗ ∼ π (w∗/2)2L. For the
present parameters, this implies loops with a total thickness of
w∗ ∼ φ1/2w � w/100 � 4 × 106 cm, which would imply there
is an unseen substructure of thin strands within the flare loops.

Various lines of evidence indicate that there are smaller-scale
structures in the corona, e.g., Mullan (1990). Radio polarization
data point to the existence of structures in the corona that are
∼100 km in size (Melrose 1975). The possibility that 100 km
structures are associated with collapsing magnetic reconnection
sites in the corona was discussed by Mullan (1980): using
constraints on the collapse timescales and coronal Alfvén
speeds, transverse dimensions of order 100 km were found to
be typical of reconnection sites in the corona. More recently,
there is evidence that X-class flare loops are composed of
thin threads from high-resolution observations, with structure
at scales of a few arcseconds (1′′ � 108 cm) and below
(Dennis & Pernak 2009; Kontar et al. 2010; Krucker et al.
2010). There is also abundant evidence from the footpoints of
flaring loops that most of the emission is spatially unresolved,
such as in Transition Region and Coronal Explorer (TRACE)
white-light flares (Hudson et al. 2006). Xu et al. (2006) found
a core region within a halo region in two X-class white-
light flares, reporting a ratio of the area of the core to the
halo of 4% and 25%, respectively. Also, simulations of loops
comprised of many small scale filaments were able to reproduce

cooling characteristics of large flare loops observed with TRACE
(Warren et al. 2003). Thus, the conclusion that there are small
substructures of flare loops is not without precedent.

The prediction of small-scale loops has implications for the
heating mechanism of the flare loops. Hannah et al. (2008)
estimated that the non-thermal power in accelerated electrons
during the time of peak emission in the RHESSI microflares
is 1026 erg s−1. For loops of area 1014 cm2 as predicted by the
present results, the energy deposition rate per unit area would
be 1012 erg s−1 cm−2. This is an enormous value, as discussed
in Krucker et al. (2010). Hence, if the filling factor is indeed
∼10−4, then microflares are not likely heated by electron beams.
A recent model that the flare energy is transported by Alfvén
waves (Fletcher & Hudson 2008) would not be ruled out by the
data.

An interesting result of the present study is that the conductive
and radiative cooling times derived by assuming their equality
at the time of maximum temperature are comparable to the
observed microflare decay times. A possible ramification of
this result is that it lends credence to the assumption that the
conductive and radiative times are comparable to the decay
time, τR ∼ τC ∼ τD . This is relevant to stellar flare studies in
which plasma parameters were obtained under such assumptions
(Haisch 1983; Stern et al. 1983). In addition, a previous study of
stellar flares (Mullan et al. 2006) found that results of this model
are largely consistent with independently determined plasma
parameters. If one believes that the scaling analysis cooling
times actually represent physical cooling times for loops, the
result suggests that conductive and radiative cooling act at
comparable levels to cool flare loops, at least for the microflares
in the present study.

Future work could include efforts to incorporate physical
effects left out of the model as summarized at the end of
Section 3. Also, future studies could further try to minimize the
systematic errors discussed in Section 4. These can be addressed
both with observations and with numerical modeling. Also,
the study of the cooling times of individual events will help
determine the validity of the cooling time analysis.
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