Kinetic equilibrium solution to the Vlasov equation in cylindrical geometry

Luke Neal and Earl Scime - Department of Physics and Astronomy, West Virginia University

Motivation
- Solve Vlasov-Poisson equation in cylindrical geometry for a pressure gradient comparable in length to an ion gyroradius in the NRL Space Chamber
- Estimate the self-consistent electric field perp and parallel to the magnetic field and the resulting temperature anisotropy in the gradient region
- Explain the emergence of observed broadband wave emission using the equilibrium solution

NRL Space Chamber Experimental Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (cm⁻³)</td>
<td>10⁻¹⁰⁻¹⁰⁻⁶</td>
</tr>
<tr>
<td>T_e (eV)</td>
<td>0.1-1.4</td>
</tr>
<tr>
<td>B (G)</td>
<td>Up to 250</td>
</tr>
<tr>
<td>μ_e (mm)</td>
<td>0.1-0.7</td>
</tr>
<tr>
<td>f_p (Hz)</td>
<td>10⁻⁵⁻¹⁰⁻³</td>
</tr>
<tr>
<td>f_e (Hz)</td>
<td>10⁻¹⁰⁻⁴⁻¹⁰⁻³ (Ar²)</td>
</tr>
<tr>
<td>f_h (Hz)</td>
<td>10⁻¹⁻¹⁰⁻³</td>
</tr>
</tbody>
</table>

Vlasov Solution Constructed from Constants of Motion

\[f_0(H, r_g) = \frac{N_e}{(2\pi)^{3/2}|\Psi_0|} \exp \left(-\frac{H^2}{2|\Psi_0|^2} \right) \]

\[Q_0(r_g) = \left(\frac{r_g - R_i}{R_o - R_i} \right), \quad \lambda_i^2 < r_g^2 < \lambda_e^2 \]

Equilibrium Solution Replicates Space Chamber Conditions on \(\rho_1 \) Scale

Model density profiles are obtained as the zeroth moment of \(f_0 \).

Temperature Anisotropy Creates Instabilities (What Instabilities?)

- Higher moments of \(f_0 \) are computed to give the velocity and temperature profiles across the gradient region.

Broadband Waves Observed in Space Chamber

- Waves exhibit burning, chirping, and amplitude substructure
- Burst frequency falls into two frequency bands above and below electron cyclotron frequency
- High frequency band appears when low bias voltage is applied to the interior plasma column
- High-frequency waves exist where streaming electrons and pressure gradients coincide

Conclusions
- Model reproduces density and electric field profiles in NRLSPC
- Ion and electron layer separation produces current across the density gradient
- Temperature anisotropy arises do to \(E_L \) which can create instabilities

Future Work

- Investigate collisional effects on the equilibrium
- Consider piecewise linear \(Q(r) \) to eliminate kinks at the layer boundary
- Develop solution for an expanding magnetic field

Acknowledgements

This work was performed at NRL in the summer of 2018, and would not be possible without essential contributions from Chris Crabtree, Guru Ganguli, Erik Tejero, and Lon Enloe.

This work is supported by NRL base funding and NSF Grant PHY-1360278

LIFE Waveforms

- A 15 V/m electric field nearly doubles the orbital frequency of 0.5 eV Ar ions in a 100 G magnetic field.
- The orbital frequency of 2 eV electrons is unaffected by a 1000 V/m electric field in a 100 G magnetic field.

Applicability to Helix-Leia System

The analysis thus far was performed assuming a uniform magnetic field. A magnetic field gradient in the direction of the field will cause a change on the local plasma parameters along the field lines, giving rise to a changing potential \(\Phi(r) \), and thus a parallel electric field, \(E_p = \partial \Phi(r)/\partial z \). This parallel electric field may accelerate particles along the field creating inhomogeneous beams or flows, as seen in the Helix-Leia system at WVU.

References

- Crabtree, Guru Ganguli, Erik Tejero, and Lon Enloe.
- A new magnetic field geometry is reflected in the Hamiltonian.