We report velocity distribution functions measured in the $E \times B$ direction and perpendicular to a plasma facing surface in a boundary with a weak magnetic field. In these scenarios, the mean free path and the ion gyroradius are comparable ($\lambda \sim \rho$) and the Debye sheath is small ($\lambda_D \ll \rho$). Ion flows in the $E \times B$ direction, which are predicted to attain significant fractions of the sound speed, have recently been experimentally observed. We report measurements of ion velocity distributions in this direction for a range of collisionality λ_D and magnetic field B. Experiments are conducted in the vicinity of a boundary region created in the HELIUS tokamak source, which produces plasma densities of 10^{19}–10^{20} m$^{-3}$ and magnetic fields up to 1 T. Electron probe measurements of electron energy distributions and plasma potential are presented as well. Measurements are compared to distribution functions calculated using the fully kinetic full-orbit Particle-in-Cell code PICPIC including Monte-Carlo collisions.

Mapping a Boundary in 3D requires specialized diagnostics

3D translatable Langmuir probe measures non-Maxwellian EEDFs/IVDFs

IVDFs in the $E \times B$ direction reveal flow-shifted Maxwellian distributions and non-flowing neutrals

Ion distributions show flow-shifted Maxwellians drifting toward $E \times B$

Neutral distributions show non-flowing bulk parallel to E, with no collisional features such as charge exchange observed

LIF and probe measurements compare well with collisional fluid and PIC simulations

(a) λ_D Mach number ($M = v_L/c$) is 5 compared to collisional fluid and PIC models.

(b) Plasma potential compared to simulations

Data compare best to collisional particle-in-cell models which include a force accelerating the ions into the boundary region

Conclusions & Outlook

3D multispecies distribution functions have been measured and compared to fluid and fully-kinetic PIC models

In the boundary of a weak-to-intermediate magnetic field, cross-field ion drifts develop in 3D, even in the presence of a non-flowing neutral background

LIF data show greater acceleration toward $E \times B$ at lower pressure and stronger magnetic field, but more data is required to resolve dependence of these flows on ψ.

This work is supported by U.S. National Science Foundation Grant No. PHY-190278 (NVL) and SciDAC Project No. DE-SC00-08875 (UIUC).