Last Time: Linear Momentum & Impulse

\[\vec{p} = m\vec{v} \]
Units: kg m/s

• Linear momentum of an object is mass times velocity

• Linear momentum is a vector. Direction of linear momentum is the same as the velocity of the object

\[\vec{F}_{net} = \frac{\Delta \vec{p}}{\Delta t} \]

\[I = \Delta \vec{p} = \vec{F} \Delta t \]

1. A force must act on an object for impulse to occur
2. In a collision, an impulse occurs in the direction of the force acting on the object
Main Ideas in Class Today

After today’s class, you should be able to:

• Understand what a “system” is and determine whether it is isolated

• Apply Conservation of Linear Momentum to determine a final velocity in one or two dimensions

Extra Practice: 6.21, 6.23, 6.27, 6.65
What is a System?

A system is a set of objects interacting with each other (set of pool balls, ball/bat, students in this room).

An isolated system has no unbalanced external forces, meaning no unbalanced forces outside the system (e.g., normal/gravity).

In an isolated system $\mathbf{F}_{\text{net,system}} = 0$ because of Newton’s Third Law:

$$ \mathbf{F}_{12} = -\mathbf{F}_{21} $$

$$ \mathbf{F}_{\text{net,system}} = \mathbf{F}_{12} + \mathbf{F}_{21} $$

The collision between two billiard balls on a friction-free surface occurs in an isolated system.
Isolated System?

Ignore air resistance.

A. Yes.
B. No.

- Cars crashing on ice (ignore friction, small)
- Jumping guy hits soccer ball in air
- Two boats crashing
Car and Zombie moving with constant velocity (before and after hitting each other)

A. Yes.
B. No.
Even if a system isn’t isolated, sometimes we can approximate it as isolated by only considering just before and after the instant of the collision (other forces don’t have much time to act)

Would work fine

Would not work here (external force has a large impact on the result)
There is Conservation of Linear Momentum in Isolated Systems.

N’s 2nd Law:

\[\vec{F}_{\text{net, system}} = \frac{\Delta \vec{p}_{\text{system}}}{\Delta t} = 0 \]

\[\Rightarrow \Delta \vec{p}_{\text{system}} = \vec{p}_{f\text{, system}} - \vec{p}_{i\text{, system}} = 0 \]

\[\vec{p}_{f\text{, system}} = \vec{p}_{i\text{, system}} \]

Ex: collision of two billiard balls on a frictionless surface

\[m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} \]

This is a vector formula. What does that mean?

While not isolated in the y direction, can use momentum formula in x direction.
Recoil

A rifle with a weight \((W=mg)\) of 20 N fires a 4.0 g bullet with a speed of 280 m/s.

(a) Find the recoil speed of the rifle.

(b) If a 725 N man holds the rifle firmly against his shoulder, find the recoil speed of the man and rifle.

What is the system?
Conservation of momentum

The head of a 0.2 kg golf club is traveling at 55 m/s just before it strikes a 0.046 kg golf ball at rest on a tee. After the collision, the club head travels (in the same direction) at 40 m/s. Find the speed of the golf ball just after impact.

Treat the system as isolated during the instant of collision.
Colliding objects

- Let $m_2 = 2m_1$, so m_2 is twice as massive.
- Let’s say you hit ball 1 with $v_{1i} = 10 \text{ m/s}$ into stationary ball 2, $v_{2i} = 0 \text{ m/s}$.
- Let’s say that after the collision, ball 1 is stationary. (not always the case)
- What is the final velocity of ball 2?
 A) 5 m/s
 B) 10 m/s
 C) 20 m/s
 D) -5 m/s
 E) -20 m/s
An open cart is rolling to the left at a constant speed on a horizontal surface. A package slides down a chute and lands in the cart. Which quantities have the same value just before and just after the package lands in the cart?

A. The horizontal component of total momentum

B. The vertical component of total momentum

C. Both of the above

D. None of the above
A 500-kg freight package is dropped vertically onto a 1000-kg rail cart moving at 6 m/s. The package is moving at 3 m/s just before landing on the cart. After the drop, the speed of the cart and package is closest to:

A. 9 m/s
B. 7 m/s
C. 6 m/s
D. 4 m/s
E. 3 m/s
Example: A Runaway Railroad Car

A 14,000 kg railroad car is rolling at 4.00 m/s toward an intersection. As it passes a grain elevator, 2,000 kg of grain suddenly drops vertically into the car. Ignore friction and air drag.

How long does it take for the car to travel the 500 m distance from the grain elevator to the intersection?

\[\sum \vec{F}_{\text{ext}} = \vec{F}_{\text{g grain}} + \vec{F}_{\text{g car}} + \vec{F}_{\text{n}} = \frac{\Delta \vec{P}_{\text{sys}}}{\Delta t} \]

Conserved in x direction

\[(m_{c} + m_{g})v_{fx} = m_{c}v_{ix} + m_{g}(0) \quad v_{fx} = v_{ix} \frac{m_{c}}{m_{c} + m_{g}} \]

\[P_{\text{sys fx}} = P_{\text{sys ix}} \]

\[d = v_{fx} \Delta t \quad \Rightarrow \quad \Delta t = \frac{d(m_{c} + m_{g})}{m_{c}v_{ix}} = \frac{(500 \text{ m})(14000 \text{ kg} + 2000 \text{ kg})}{(14000 \text{ kg})(4.00 \text{ m/s})} = 143 \text{ s} \]
An astronaut in her space suit has a total mass of $m_1 = 87$ kg, including her oxygen tank. Her tether line loses its attachment to her spacecraft and she is too far to grab on! Initially at rest with respect to her spacecraft, she throws her oxygen tank of mass $m_2 = 12.0$-kg away from her spacecraft with a speed $v = 8.00$ m/s to propel herself back toward the spacecraft.

Determine the maximum distance she can be from the craft and still return within 2.00 min (the amount of time the air in her helmet remains breathable).
Forces of Motion

• Cars move due to the force of friction between the tires and road.
• Planes take advantage of air resistance.
• Boats use the resistance of the water.
 • But what about rockets in space? There is no air in space to provide a resistance.
“That Professor Goddard…does not know the relation of action to reaction, and … the need to have something better than a vacuum against which to react--to say that would be absurd. Of course he only seems to lack the knowledge ladled out daily in high schools.”

What do you think about this critique?

2 Lessons: Even brilliant scientists make mistakes. And frequently, even experts don’t agree.
Diet Coke and Mentos

www.youtube.com/watch?v=22cfLVtUWn8

What does this have to do with rockets?
Rocket Propulsion

• While it’s true that there is no friction to propel rockets forward in space, there is conservation of momentum.

\[
\vec{p}_{i,\text{system}} = \vec{p}_{f,\text{system}}
\]

\[
m_1 \vec{v}_{i1} + m_2 \vec{v}_{i2} = m_1 \vec{v}_1' + m_2 \vec{v}_2'
\]

Instead of throwing the tank, imagine just letting the gas in the tank spray out (safer, but slower)

Note: Changing mass
Rocket video

http://www.youtube.com/watch?v=vPQvTgD2quQ
Let’s consider this situation again
Could find recoil of soccer player.
In research of cardiology and exercise physiology, it is often important to know the mass of blood pumped by a person's heart in one stroke. This information can be obtained by means of a ballistocardiograph. The instrument works as follows: The subject lies on a horizontal pallet floating on a film of air. Friction on the pallet is negligible. Initially, the momentum of the system is zero. When the heart beats, it expels a mass m of blood into the aorta with speed v, and the body and platform move in the opposite direction with speed V. The speed of the blood can be determined independently. Assume that the blood's speed is 50.0 cm/s in one typical trial. The mass of the subject plus the pallet is 54.0 kg. The pallet moves 6.00×10^{-5} m in 0.160 s after one heartbeat. Calculate the mass of blood that leaves the heart. Assume that the mass of blood is negligible compared with the total mass of the person.
Chapter/Section: Clicker #=Answer
Ch.6: 67=B, 68=A, 69=B
Ch.6B: 70=B, 71=A, 72=B, 73=A, 74=B, 75=A, 76=A, 77=D